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Controle final - Mercredi 9 janvier 2024
durée : 3 h
Le candidat attachera la plus grande importance a la clarté, a la précision et
a la concision de la rédaction. Dans toutes les questions, il sera tenu le plus
grand compte de la rigueur de la rédaction.
L’usage de tout document et de tout matériel électronique est interdit.

1 Anneaux et corps

Préambule : Par anneau on entend anneau unitaire. On notera (a) l'idéal engendré
par un élément a d’un anneau commutatif. Etant donné une extension finie de corps E/F),
le degré de F sur F' (c.-a.-d. la dimension de ' comme espace vectoriel sur F') sera noté
par [E : F.

Exercice 1. (Question de cours) Soit R un anneau intégre.
1. Rappeler la définition d’un idéal premier et d’un idéal maximal de R.
2. Rappeler la définition d’un anneau principal.
3. Montrer que si R[z]| est un anneau principal, alors R est un corps.
4

. Soit A un anneau principal et I # (04) un idéal premier de A. Montrer que I est
un idéal maximal de A.

Exercice 2. Soit R un anneau commutatif. On suppose que toute suite strictement
croissante d’idéaux de R est finie, c.a.d. si

LCLL,CI3C---

est une suite infinie d’idéaux de R encastrés, alors il existe un entier N > 1 tel que
I, = Iy pour tout n > N.

1. Soit ¢ : R — R un morphisme d’anneau de R vers R. Montrer que si ¢ est surjectif,
alors ¢ est injectif. (Indication : On pourra considérer la suite d’idéaux (1,,),>1 ol
I, = Ker(¢™).)

2. Donner un exemple d’un anneau commutatif unitaire A et un morphisme f: A — A
qui est surjectif mais pas injectif.

Solution. 1. On pose I,, = Ker(¢"). On a donc que I,, C I,,,1 pour tout n > 1. En fait,
pour z € I, on a que " (x) = ¢p(¢"(z)) = ¢(0r) = 0g. Or par hypothése, il existe
N > 1 tel que I, = Iy pour tout n > N. Montrons que ¢ est injectif. Il suffit de montrer
que Ker(p) = {0x}. Soit a € Ker(¢). Comme oV est surjectif, on a que a = o™ (z) pour
un certain z € R. On a donc que 0z = ¢(a) = @V 1(x) et donc x € Iy ;. Il s’ensuit que
x € Iy, c’est a dire, a = o™ (x) = Og. O

Solution. 2. Soit A I'ensemble des suites réelles (a,),>1. Alors A est un anneau unitaire
commutatif pour I’addition et le produit de suites. On remarque que A n’est pas intégre
(par exemple : (1,0,1,0,...)-(0,1,0,1,...) = (0,0,0,0,...)). On considére 'application
¢+ A — A définie par (a1, as,as,...) — (ag,as,ayq,...). On vérifie aisément que ¢ est
bien un morphisme d’anneau surjectif mais pas injectif. O
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Exercice 3. Soient dy,ds € Q. On suppose que dy, dsy et didy ne sont pas des carrés, c’est
a dire dy,do, dydy ¢ {a® : a € Q}. On considére I'extension Q(v/dy, /d2)/Q engendrée
par \/d; et v/dy. On pose a = \/d; + +/ds € C.

1. Montrer que [Q(y/dy, Vds) : Q] = 4.
Déterminer une base de Q(1/dy, v/dz) en tant que Q-espace vectoriel.

Montrer que Q(a) = Q(v/dy, v/ds). En déduire que [Q(a) : Q] = 4.
Déterminer un polynome f(x) € Q[z] unitaire et de degré 4 tel que f(a) = 0.
En déduire que f(x) est le polynome minimal de .

Déterminer le polyndéme minimal de V2 4+ /3.

Solution. 1. On a que Q(V/dy,Vdy) = Q(/d1)(v/ds). Or, v/d; est racine du polynéme
p1(z) = 22 —d; € Q[x] et comme d; n’est pas un carré, il s’ensuit que p; (z) est irréductible
dans Q[z] et donc [Q(y/d; : Q] = 2. On a aussi que {1,/d;} est une base de Q(v/d;) sur
Q. On pose po(x) = 2% — dy € Q[z] € Q(+/dy)[x]. Montrons que py(z) est irréductible
dans Q(v/dy)[x]. 1l suffit de montrer que v/dy ¢ Q(v/d;). Supposons au contraire que
Vdy € Q(v/dy). Alors /dy = a+by/d; avec a,b € Q. Il s’ensuit que dy = a®+bd; +2ab\/d;
ou encore a? + b%’d; — dy + 2aby/d, = 0. On a donc que a® + b%*d; — dy = 2ab = 0.
Or, si b = 0 alors dy = a?, une contradiction; si a = 0, alors dy = b%*d; qui implique
dydy = b*d? = (bd;)?, une contradiction. Ayant montré que v/dy ¢ Q(v/d,), il s’ensuit que
p2(z) est irréductible dans Q(v/dy)[x] et donc [Q(v/d1, v/do) : Q(v/d1)] = 2. Finalement,

Q(Vdi, V/d2) : Q] = [Q(Vdy, V) : QVd)|[Q(Vdy : Q] =22 = 4.

AR AN ol A

]

Solution. 2. On a que {1,v/d;} est une base de Q(y/d;) sur Q et {1,v/ds} est une
base de Q(v/dy, V/ds) sur Q(v/dy). 1l s’ensuit que {1,/dy, /ds, /did>} est une base de
Q(Vdy, Vdy) sur Q. O

Solution. 3. On a que a = \/d; ++/dy € Q(\/d1,/ds) et donc Q(a) C Q(+v/dy, /d3). Pour
montrer I'inclusion inverse il suffit de montrer que v/d; € Q(a). Or, (o — \/dy)? = dy, et
donc

Oé2 — 206\/d1 + d1 - dQ
ou encore

o +dy —d
\/dl :# EQ(@).

Solution. 4. On a montré que a? + d; — dy = 2av/d;. En prenant le carré on a
044 + 2(d1 — dg)(lfQ + (d1 — d2)2 = 40&2d1

ou encore
Oé4 — 2(d1 -+ dQ)O{Q + (dl - d2)2 =0

qui montre que « est racine du polynome f(z) = z* —2(dy +dy)2? + (dy —d)? € Q[z]. O
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Solution. 5. On pose my(x) € Qz] le polynéme minimal de o dans Q[z]. On a que
me(x) est un polynéme unitaire et m,(a) = 0. De plus, le degré de m,(z) est égal a

Q(«) : Q] = 4. 1l s’ensuit que m,(x) = f(z).
[]

Solution. 6. Par application des question précédentes avec d; = 2 et dy = 3 on trouve
que le polynéme minimal de v/2 + /3 est 2! —2(2+3)22 + (2—3)2 =2 — 1022 +1. O

Exercice 4. Soit ' = IF, un corps fini de cardinalité ¢ > 2. On note 0 = Op et 1 = 1p.
Soit E une extension de F' de degré p avec p premier. Le but de cet exercice sera de
déterminer le nombre de polynémes irréductibles unitaires de degré p dans F[z]. On pose
g(z) =29 —z € Flz].

1. Déterminer la cardinalité du corps F.

2. En déduire que g(a) = 0 pour tout a € F.

3

. En déduire que E est un corps de décomposition de g(z) et que le polynéme g(z)
admet ¢P racines distinctes.

4. Montrer que g(x) peut s’écrire comme un produit

9(x) = fi(x) fa(x) - - fr(2) (*)

avec f;(z) € F[z] irréductible et unitaire pour chaque 1 <1i <.

5. En déduire que f;(z) # f;(z) pour 1 <i < j <71 et que le degree de f;(z) est 1 ou
p pour tout 1 < < r.

6. Montrer que z — a € F[z] divise g(x) pour tout a € F.

7. Soit f(x) € F[z] un polynéme irréductible unitaire de degré p. Montrer que f(z)
divise g(x).

8. En utilisant que la somme des degrés des f;(x) dans (*) est égal a le degré de g(x),

déduire que le nombre de polynémes irréductibles unitaires de degré p dans F|x]
est €4,
P

Solution. 1. Comme l'extension E/F est de degré p, il s’ensuit qu’il existe une base

{e1,€2,...,¢e,} de E sur F' de cardinalité p. Or, tout élément x € E peut s’écrire de
maniére unique sous la forme x = aje; +ases + - - - +aye, avec les a; € F. Ainsi le cardinal
de FE est ¢P. O

Solution. 2. Par application du théoréme de Lagrange au group multiplicatif £* = F\ {0}
qui est d’ordre ¢? — 1, il s’ensuit que a?~! = 1 pour tout a € E* et donc a? = a pour
tout @ € E*. D’autre part on a aussi que a?" = a pour a = 0 et donc a?" = a pour tout
a € E qui montre que tout élément de E est racine du polynéme g(z). O

Solution. 3. On vient de montrer que g(z) admet ¢” racines (distinctes) dans le corps F.
Or, comme g(z) est de degré ¢, il s’ensuit que E contient toutes les racines de g(z) et
donc g(z) est scindé sur E. De plus E est une extension minimale de F' contenant toutes
les racines de g(x). Il s’ensuit que E est un corps de décomposition de g(x). O
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Solution. 4. Comme F[x] est un anneau factoriel, on a que g(x) € F|x] peut s’écrire
comme un produit g(z) = g1(z)g2(x) - - - g.(z) avec les g;(x) irréductibles. Or, pour tout
1 < ¢ < r, on peut écrire g;(x) = a;fi(x) avec a; € F et fi(x) unitaire et irréductible
(car g;(x) est irréductible). On a donc g(x) = afi(x)fo(z) - fr.(z) avec a = ajay - - - a,.
Comme les polynomes g(x) et fi(x)fa(x)- - f.(z) sont unitaires, il s’ensuit que a = 1. [

Solution. 5. Par application de la question 3., toute racine de g(x) est de multiplicité
1 et donc fi(x) # fj(x) pour i # j. Pour 1 < i < r, on a que le polynéme f;(x)
admet une racine o; € E. En fait, comme f;(z) € F[x] C E[z], il existe une extension
E'/E contenant une racine «; de f;(z) (il suffit de prendre £’ un corps de rupture de
fi(z) € Elz]). Mais dans E[z] on a que g(z) = [[.cp(* — e) et donc dans E' on a que
0= g(a;) = [[.cp(a; — e). Il s’ensuit que a; — e = 0 pour un certain e € E, qui montre
que «; € E. De plus, comme f;(x) est unitaire et irréductible, il s’ensuit que f;(z) est le
polynéme minimal de o; € E et donc [F(«;) : F] = deg f;(x). D’autre part, [F(«;) : F]
divise [E : F] = p et donc deg f;(z) = 1 ou p. O

Solution. 6. Par application de la question 2 on a que g(a) = 0 pour tout a € F et donc
en particulier pour tout a € F. Il s’ensuit que z — a divise g(z). En fait, comme F[z] est
un anneau euclidien (résultat de cours), on peut écrire g(z) = ¢(x)(z — a) + r pour un
certain ¢(z) € Flz] et r € F. On posant = a on trouve que r = 0. O

Solution. 7. Soit f(x) € F[z] un polynéme unitaire irréductible de degré p. Soit E'/F
un corps de rupture de f(z) contenant une racine a de f(x). Alors on a que [E' : F] =
degf(x) = p. Par application de la question 2. on a que tout a € E’ est racine de g(x).
En particulier g(ar) = 0. Comme Fx] est un anneau factoriel on peut écrire g(x) =
q(z)f(x) + r(z) avec q(z),r(x) € Flz] et degr(z) < p. En posant x = a on trouve que
r(a) = 0. Mais comme f(z) est le polynéme minimal de a dans Flz], il s’ensuit que
r(z) =0 et donc f(z) divise g(z). O

Solution. 8. Par application des question précédentes on a que i)

9(x) = filz)falz) - - fr(2) (*)

avec les f;(x) € Flx] irréductibles et unitaires; ii) f;(x) # f;(x) pour 1 <i < j < r; iii)
degfi(x) = 1 ou p;iv) tout polynéme irréductible unitaire de degré 1 ou p apparait dans la
factorisation (*) de g(z). Comme ¢* = degg(xz) =Y ._, deg f;(x) on a que ¢* = q + pN,
ot N, est le nombre de polynémes irréductibles unitaires de degré p dans F[z]. Ainsi
N, = =4, O

p P
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2 Représentations de groupes

Préambule : Par représentation d’'un groupe fini G on entendra un morphism py :
G — GL(V) ou V est un C-espace vectoriel non-nul de dimension finie. La dimension de V'
est appelée le degré de la représentation py . On note irrep(G) le nombre de représentations
irréductibles de G, & isomorphisme prés, et Conj(G) 'ensemble des classes de conjugaison
de G.

Exercice 5. Soit py : G — GL(V) une représentation d’un groupe fini G. On note yy
le caractere de la représentation py .
1. Soit ¢ € G un élément d’ordre 4 qui est conjugué a son inverse. Montrer que
xv(9) € Z.
2. Soit ¢ € G un élément d’ordre 3 qui est conjugué a son inverse. Montrer que
xv(g) € Z et que xv(g9) = xv(e) (mod 3).
3. On consideére 'application
dety : G — C*.

définie par g — det py(g). Montrer que dety est une représentation de G de degré
1.

4. On suppose que G est un groupe non-abélien. Montrer que si G est simple (c’est
a dire, les seuls sous-groupes distingués (normaux) de G sont {e} et G) alors dety
est la représentation triviale, c.a.d. dety (g) = 1 pour tout g € G.

Solution. 1. Pour chaque x € GG, 'endomorphisme py () est diagonalisable. Il existe donc
une base By de V telle que la matrice de py(g) relative a la base By est diagonale

A0 .00
0 A ... O
0 0 ... A\
avec n = dim V. Comme g est un élément d’ordre 4, on a que A\{ = 1 et donc \ € {+1, +i}

pour tout 1 < k < n. Or, comme g et g~! sont conjugués, on a que xv(g) = xv(g71) et
donc

Zx\k =xvi(g) =xvig™") = ZA; = Z)‘ik’ = xv(9)
k=1 k=1 k=1

qui montre que xy(g) € R. Ainsi Card{k : A\, = i} = Card{k : A\, = —i}, c’est & dire
il y a le méme nombre d’occurrences de i et —i sur la diagonale de la matrice py(g). 1l
s’ensuit que xy(g) est une somme de 1 et donc un nombre entier. O

Solution. 2. De méme il existe une base By de V telle que la matrice de py(g) relative a
la base By est diagonale
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avec n = dim V. Comme g est un élément d’ordre 3, on a que A} = 1 et donc A\, € {1, 7, 7%}
oll j = exp % Finalement comme ¢ et ¢g~! sont conjugués, on a que xy(g) = xv(g!)
et donc comme dans la question précédente, xy(g) € R. Ainsi, si on pose r = Card{k :
A = j}, alors r = Card{k : A\ = j?}, et donc xv(9) = rj + rj* + (n — 2r)1. Or,
comme 1 + j + j2 = 0, il s’ensuit que xy(g) = —r +n —2r = n — 3r € Z. De plus,

xv(g) =n—3r=xv(e) —3r = xv(e) (mod 3). O

Solution. 3. Comme l'endomorphisme py(g) est inversible pour tout ¢ € G, on a que
det py(g) # 0 et donc dety (g) € C*. Montrons que dety est un morphisme de groupes :
Pour tout g1,92 € G on a que

dety (g192) = det(pv (9192)) = det(pv (91)pv (g2)) = det(py(g1)) det(py (g2)) = dety (g1)dety (g2).

[

Solution. 4. Comme Ker(dety) = {g € G : dety(g) = 1} est un sous-groupe distingué de
G et G est supposé étre un groupe simple, il s’ensuit que Ker(dety) = {e} ou G. Or si
Ker(dety) = {e} on aurait que dety est injectif et donc G serait isomorphe a Im(dety)
qui est un sous-groupe de C*. Mais comme C* est abélien, on aurait que G est abélien,
une contradiction. On a donc que Ker(dety) = G, c’est a dire dety(g) = 1 pour tout
g €. O

Exercice 6. Soit py : G — GL(V) une représentation d’un groupe fini G.
1. Rappeler la définition d'une sous-représentation py de py.
2. On pose
VE ={veV|py(g)(v) = vpour tout g € G}.
Montrer que V& est une sous-représentation de py .
3. On considére 'application

vy V= V.

définie par

v (v) =Y pv(9)(v).

geG
Montrer que I'application 7y est une projection G-linéaire de V' vers V.

4. On pose G = Oy =< g : g* = e > le groupe cyclique d’ordre 4 et on considére la
représentation py de G définie par

7 0 0
prlg)=i=1 1 0
1—1 0 1

Il sera admit que py est bien une représentation de G de degré 3. Déterminer V&,

5. Ecrire py comme une somme de représentations irréductibles de G.



