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Contrôle final - Mercredi 9 janvier 2024
durée : 3 h

Le candidat attachera la plus grande importance à la clarté, à la précision et
à la concision de la rédaction. Dans toutes les questions, il sera tenu le plus

grand compte de la rigueur de la rédaction.
L’usage de tout document et de tout matériel électronique est interdit.

1 Anneaux et corps
Préambule : Par anneau on entend anneau unitaire. On notera (a) l’idéal engendré

par un élément a d’un anneau commutatif. Étant donné une extension finie de corps E/F,
le degré de E sur F (c.-à.-d. la dimension de E comme espace vectoriel sur F ) sera noté
par [E : F ].

Exercice 1. (Question de cours) Soit R un anneau intègre.
1. Rappeler la définition d’un idéal premier et d’un idéal maximal de R.
2. Rappeler la définition d’un anneau principal.
3. Montrer que si R[x] est un anneau principal, alors R est un corps.
4. Soit A un anneau principal et I 6= (0A) un idéal premier de A. Montrer que I est

un idéal maximal de A.

Exercice 2. Soit R un anneau commutatif. On suppose que toute suite strictement
croissante d’idéaux de R est finie, c.à.d. si

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

est une suite infinie d’idéaux de R encastrés, alors il existe un entier N ≥ 1 tel que
In = IN pour tout n ≥ N.

1. Soit ϕ : R→ R un morphisme d’anneau de R vers R. Montrer que si ϕ est surjectif,
alors ϕ est injectif. (Indication : On pourra considérer la suite d’idéaux (In)n≥1 où
In = Ker(ϕn).)

2. Donner un exemple d’un anneau commutatif unitaire A et un morphisme f : A→ A
qui est surjectif mais pas injectif.

Solution. 1. On pose In = Ker(ϕn). On a donc que In ⊆ In+1 pour tout n ≥ 1. En fait,
pour x ∈ In on a que ϕn+1(x) = ϕ(ϕn(x)) = ϕ(0R) = 0R. Or par hypothèse, il existe
N ≥ 1 tel que In = IN pour tout n ≥ N. Montrons que ϕ est injectif. Il suffit de montrer
que Ker(ϕ) = {0R}. Soit a ∈ Ker(ϕ). Comme ϕN est surjectif, on a que a = ϕN(x) pour
un certain x ∈ R. On a donc que 0R = ϕ(a) = ϕN+1(x) et donc x ∈ IN+1. Il s’ensuit que
x ∈ IN , c’est à dire, a = ϕN(x) = 0R.

Solution. 2. Soit A l’ensemble des suites réelles (an)n≥1. Alors A est un anneau unitaire
commutatif pour l’addition et le produit de suites. On remarque que A n’est pas intègre
(par exemple : (1, 0, 1, 0, . . .) · (0, 1, 0, 1, . . .) = (0, 0, 0, 0, . . .)). On considère l’application
ϕ : A → A définie par (a1, a2, a3, . . .) 7→ (a2, a3, a4, . . .). On vérifie aisément que ϕ est
bien un morphisme d’anneau surjectif mais pas injectif.
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Exercice 3. Soient d1, d2 ∈ Q. On suppose que d1, d2 et d1d2 ne sont pas des carrés, c’est
à dire d1, d2, d1d2 /∈ {a2 : a ∈ Q}. On considère l’extension Q(

√
d1,
√
d2)/Q engendrée

par
√
d1 et

√
d2. On pose α =

√
d1 +

√
d2 ∈ C.

1. Montrer que [Q(
√
d1,
√
d2) : Q] = 4.

2. Déterminer une base de Q(
√
d1,
√
d2) en tant que Q-espace vectoriel.

3. Montrer que Q(α) = Q(
√
d1,
√
d2). En déduire que [Q(α) : Q] = 4.

4. Déterminer un polynôme f(x) ∈ Q[x] unitaire et de degré 4 tel que f(α) = 0.

5. En déduire que f(x) est le polynôme minimal de α.
6. Déterminer le polynôme minimal de

√
2 +
√
3.

Solution. 1. On a que Q(
√
d1,
√
d2) = Q(

√
d1)(
√
d2). Or,

√
d1 est racine du polynôme

p1(x) = x2−d1 ∈ Q[x] et comme d1 n’est pas un carré, il s’ensuit que p1(x) est irréductible
dans Q[x] et donc [Q(

√
d1 : Q] = 2. On a aussi que {1,

√
d1} est une base de Q(

√
d1) sur

Q. On pose p2(x) = x2 − d2 ∈ Q[x] ⊆ Q(
√
d1)[x]. Montrons que p2(x) est irréductible

dans Q(
√
d1)[x]. Il suffit de montrer que

√
d2 /∈ Q(

√
d1). Supposons au contraire que√

d2 ∈ Q(
√
d1). Alors

√
d2 = a+b

√
d1 avec a, b ∈ Q. Il s’ensuit que d2 = a2+b2d1+2ab

√
d1

ou encore a2 + b2d1 − d2 + 2ab
√
d1 = 0. On a donc que a2 + b2d1 − d2 = 2ab = 0.

Or, si b = 0 alors d2 = a2, une contradiction ; si a = 0, alors d2 = b2d1 qui implique
d1d2 = b2d21 = (bd1)

2, une contradiction. Ayant montré que
√
d2 /∈ Q(

√
d1), il s’ensuit que

p2(x) est irréductible dans Q(
√
d1)[x] et donc [Q(

√
d1,
√
d2) : Q(

√
d1)] = 2. Finalement,

[Q(
√
d1,

√
d2) : Q] = [Q(

√
d1,

√
d2) : Q(

√
d1)][Q(

√
d1 : Q] = 2 · 2 = 4.

Solution. 2. On a que {1,
√
d1} est une base de Q(

√
d1) sur Q et {1,

√
d2} est une

base de Q(
√
d1,
√
d2) sur Q(

√
d1). Il s’ensuit que {1,

√
d1,
√
d2,
√
d1d2} est une base de

Q(
√
d1,
√
d2) sur Q.

Solution. 3. On a que α =
√
d1+
√
d2 ∈ Q(

√
d1,
√
d2) et donc Q(α) ⊆ Q(

√
d1,
√
d2). Pour

montrer l’inclusion inverse il suffit de montrer que
√
d1 ∈ Q(α). Or, (α−

√
d1)

2 = d2, et
donc

α2 − 2α
√
d1 + d1 = d2

ou encore √
d1 =

α2 + d1 − d2
2α

∈ Q(α).

Solution. 4. On a montré que α2 + d1 − d2 = 2α
√
d1. En prenant le carré on a

α4 + 2(d1 − d2)α2 + (d1 − d2)2 = 4α2d1

ou encore
α4 − 2(d1 + d2)α

2 + (d1 − d2)2 = 0

qui montre que α est racine du polynôme f(x) = x4−2(d1+d2)x
2+(d1−d2)2 ∈ Q[x].
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Solution. 5. On pose mα(x) ∈ Q[x] le polynôme minimal de α dans Q[x]. On a que
mα(x) est un polynôme unitaire et mα(α) = 0. De plus, le degré de mα(x) est égal à
[Q(α) : Q] = 4. Il s’ensuit que mα(x) = f(x).

Solution. 6. Par application des question précédentes avec d1 = 2 et d2 = 3 on trouve
que le polynôme minimal de

√
2+
√
3 est x4− 2(2 + 3)x2 + (2− 3)2 = x4− 10x2 +1.

Exercice 4. Soit F = Fq un corps fini de cardinalité q ≥ 2. On note 0 = 0F et 1 = 1F .
Soit E une extension de F de degré p avec p premier. Le but de cet exercice sera de
déterminer le nombre de polynômes irréductibles unitaires de degré p dans F [x]. On pose
g(x) = xq

p − x ∈ F [x].
1. Déterminer la cardinalité du corps E.
2. En déduire que g(a) = 0 pour tout a ∈ E.
3. En déduire que E est un corps de décomposition de g(x) et que le polynôme g(x)

admet qp racines distinctes.
4. Montrer que g(x) peut s’écrire comme un produit

g(x) = f1(x)f2(x) · · · fr(x) (*)

avec fi(x) ∈ F [x] irréductible et unitaire pour chaque 1 ≤ i ≤ r.

5. En déduire que fi(x) 6= fj(x) pour 1 ≤ i < j ≤ r et que le degree de fi(x) est 1 ou
p pour tout 1 ≤ i ≤ r.

6. Montrer que x− a ∈ F [x] divise g(x) pour tout a ∈ F.
7. Soit f(x) ∈ F [x] un polynôme irréductible unitaire de degré p. Montrer que f(x)

divise g(x).
8. En utilisant que la somme des degrés des fi(x) dans (*) est égal à le degré de g(x),

déduire que le nombre de polynômes irréductibles unitaires de degré p dans F [x]
est qp−q

p
.

Solution. 1. Comme l’extension E/F est de degré p, il s’ensuit qu’il existe une base
{e1, e2, . . . , ep} de E sur F de cardinalité p. Or, tout élément x ∈ E peut s’écrire de
manière unique sous la forme x = a1e1+a2e2+ · · ·+apep avec les ai ∈ F. Ainsi le cardinal
de E est qp.

Solution. 2. Par application du théorème de Lagrange au group multiplicatif E∗ = E\{0}
qui est d’ordre qp − 1, il s’ensuit que aqp−1 = 1 pour tout a ∈ E∗ et donc aqp = a pour
tout a ∈ E∗. D’autre part on a aussi que aqp = a pour a = 0 et donc aqp = a pour tout
a ∈ E qui montre que tout élément de E est racine du polynôme g(x).

Solution. 3. On vient de montrer que g(x) admet qp racines (distinctes) dans le corps E.
Or, comme g(x) est de degré qp, il s’ensuit que E contient toutes les racines de g(x) et
donc g(x) est scindé sur E. De plus E est une extension minimale de F contenant toutes
les racines de g(x). Il s’ensuit que E est un corps de décomposition de g(x).
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Solution. 4. Comme F [x] est un anneau factoriel, on a que g(x) ∈ F [x] peut s’écrire
comme un produit g(x) = g1(x)g2(x) · · · gr(x) avec les gi(x) irréductibles. Or, pour tout
1 ≤ i ≤ r, on peut écrire gi(x) = aifi(x) avec ai ∈ F et fi(x) unitaire et irréductible
(car gi(x) est irréductible). On a donc g(x) = af1(x)f2(x) · · · fr(x) avec a = a1a2 · · · ar.
Comme les polynômes g(x) et f1(x)f2(x) · · · fr(x) sont unitaires, il s’ensuit que a = 1.

Solution. 5. Par application de la question 3., toute racine de g(x) est de multiplicité
1 et donc fi(x) 6= fj(x) pour i 6= j. Pour 1 ≤ i ≤ r, on a que le polynôme fi(x)
admet une racine αi ∈ E. En fait, comme fi(x) ∈ F [x] ⊆ E[x], il existe une extension
E ′/E contenant une racine αi de fi(x) (il suffit de prendre E ′ un corps de rupture de
fi(x) ∈ E[x]). Mais dans E[x] on a que g(x) =

∏
e∈E(x − e) et donc dans E ′ on a que

0 = g(αi) =
∏

e∈E(αi − e). Il s’ensuit que αi − e = 0 pour un certain e ∈ E, qui montre
que αi ∈ E. De plus, comme fi(x) est unitaire et irréductible, il s’ensuit que fi(x) est le
polynôme minimal de αi ∈ E et donc [F (αi) : F ] = deg fi(x). D’autre part, [F (αi) : F ]
divise [E : F ] = p et donc deg fi(x) = 1 ou p.

Solution. 6. Par application de la question 2 on a que g(a) = 0 pour tout a ∈ E et donc
en particulier pour tout a ∈ F. Il s’ensuit que x− a divise g(x). En fait, comme F [x] est
un anneau euclidien (résultat de cours), on peut écrire g(x) = q(x)(x − a) + r pour un
certain q(x) ∈ F [x] et r ∈ F. On posant x = a on trouve que r = 0.

Solution. 7. Soit f(x) ∈ F [x] un polynôme unitaire irréductible de degré p. Soit E ′/F
un corps de rupture de f(x) contenant une racine α de f(x). Alors on a que [E ′ : F ] =
degf(x) = p. Par application de la question 2. on a que tout a ∈ E ′ est racine de g(x).
En particulier g(α) = 0. Comme F [x] est un anneau factoriel on peut écrire g(x) =
q(x)f(x) + r(x) avec q(x), r(x) ∈ F [x] et degr(x) < p. En posant x = α on trouve que
r(α) = 0. Mais comme f(x) est le polynôme minimal de α dans F [x], il s’ensuit que
r(x) = 0 et donc f(x) divise g(x).

Solution. 8. Par application des question précédentes on a que i)

g(x) = f1(x)f2(x) · · · fr(x) (*)

avec les fi(x) ∈ F [x] irréductibles et unitaires ; ii) fi(x) 6= fj(x) pour 1 ≤ i < j ≤ r ; iii)
degfi(x) = 1 ou p ; iv) tout polynôme irréductible unitaire de degré 1 ou p apparaît dans la
factorisation (*) de g(x). Comme qp = deg g(x) =

∑r
i=1 deg fi(x) on a que qp = q + pNp

où Np est le nombre de polynômes irréductibles unitaires de degré p dans F [x]. Ainsi
Np =

qp−q
p
.
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2 Représentations de groupes

Préambule : Par représentation d’un groupe fini G on entendra un morphism ρV :
G→ GL(V ) où V est un C-espace vectoriel non-nul de dimension finie. La dimension de V
est appelée le degré de la représentation ρV . On note irrep(G) le nombre de représentations
irréductibles de G, à isomorphisme près, et Conj(G) l’ensemble des classes de conjugaison
de G.

Exercice 5. Soit ρV : G → GL(V ) une représentation d’un groupe fini G. On note χV
le caractère de la représentation ρV .

1. Soit g ∈ G un élément d’ordre 4 qui est conjugué à son inverse. Montrer que
χV (g) ∈ Z.

2. Soit g ∈ G un élément d’ordre 3 qui est conjugué à son inverse. Montrer que
χV (g) ∈ Z et que χV (g) ≡ χV (e) (mod 3).

3. On considère l’application
detV : G→ C∗.

définie par g 7→ det ρV (g). Montrer que detV est une représentation de G de degré
1.

4. On suppose que G est un groupe non-abélien. Montrer que si G est simple (c’est
à dire, les seuls sous-groupes distingués (normaux) de G sont {e} et G) alors detV
est la représentation triviale, c.à.d. detV (g) = 1 pour tout g ∈ G.

Solution. 1. Pour chaque x ∈ G, l’endomorphisme ρV (x) est diagonalisable. Il existe donc
une base BV de V telle que la matrice de ρV (g) relative à la base BV est diagonale

λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


avec n = dimV. Comme g est un élément d’ordre 4, on a que λ4k = 1 et donc λk ∈ {±1,±i}
pour tout 1 ≤ k ≤ n. Or, comme g et g−1 sont conjugués, on a que χV (g) = χV (g

−1) et
donc

n∑
k=1

λk = χV (g) = χV (g
−1) =

n∑
k=1

λ−1k =
n∑
k=1

λk = χV (g)

qui montre que χV (g) ∈ R. Ainsi Card{k : λk = i} = Card{k : λk = −i}, c’est à dire
il y a le même nombre d’occurrences de i et −i sur la diagonale de la matrice ρV (g). Il
s’ensuit que χV (g) est une somme de ±1 et donc un nombre entier.

Solution. 2. De même il existe une base BV de V telle que la matrice de ρV (g) relative à
la base BV est diagonale 

λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


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avec n = dimV. Comme g est un élément d’ordre 3, on a que λ3k = 1 et donc λk ∈ {1, j, j2}
où j = exp 2πi

3
. Finalement comme g et g−1 sont conjugués, on a que χV (g) = χV (g

−1)
et donc comme dans la question précédente, χV (g) ∈ R. Ainsi, si on pose r = Card{k :
λk = j}, alors r = Card{k : λk = j2}, et donc χV (g) = rj + rj2 + (n − 2r)1. Or,
comme 1 + j + j2 = 0, il s’ensuit que χV (g) = −r + n − 2r = n − 3r ∈ Z. De plus,
χV (g) = n− 3r = χV (e)− 3r ≡ χV (e) (mod 3).

Solution. 3. Comme l’endomorphisme ρV (g) est inversible pour tout g ∈ G, on a que
det ρV (g) 6= 0 et donc detV (g) ∈ C∗. Montrons que detV est un morphisme de groupes :
Pour tout g1, g2 ∈ G on a que

detV (g1g2) = det(ρV (g1g2)) = det(ρV (g1)ρV (g2)) = det(ρV (g1)) det(ρV (g2)) = detV (g1)detV (g2).

.

Solution. 4. Comme Ker(detV ) = {g ∈ G : detV (g) = 1} est un sous-groupe distingué de
G et G est supposé être un groupe simple, il s’ensuit que Ker(detV ) = {e} ou G. Or si
Ker(detV ) = {e} on aurait que detV est injectif et donc G serait isomorphe à Im(detV )
qui est un sous-groupe de C∗. Mais comme C∗ est abélien, on aurait que G est abélien,
une contradiction. On a donc que Ker(detV ) = G, c’est à dire detV (g) = 1 pour tout
g ∈ G.

Exercice 6. Soit ρV : G→ GL(V ) une représentation d’un groupe fini G.
1. Rappeler la définition d’une sous-représentation ρW de ρV .
2. On pose

V G = {v ∈ V | ρV (g)(v) = v pour tout g ∈ G}.

Montrer que V G est une sous-représentation de ρV .
3. On considère l’application

πV : V → V.

définie par
πV (v) =

∑
g∈G

ρV (g)(v).

Montrer que l’application πV est une projection G-linéaire de V vers V G.

4. On pose G = C4 =< g : g4 = e > le groupe cyclique d’ordre 4 et on considère la
représentation ρV de G définie par

ρV (g) =

 i 0 0
i− 1 1 0
i− 1 0 1


Il sera admit que ρV est bien une représentation de G de degré 3. Déterminer V G.

5. Écrire ρV comme une somme de représentations irréductibles de G.


